УДК 621.396.946

ВЛИЯНИЕ ТРОПОСФЕРЫ НА ПРОПУСКНУЮ СПОСОБНОСТЬ ЛИНИИ СВЯЗИ "КОСМИЧЕСКИЙ АППАРАТ – НАЗЕМНАЯ СТАНЦИЯ СЛЕЖЕНИЯ"

© 2019 г. М. Н. Андрианов^{1, *}, В. И. Костенко¹, С. Ф. Лихачев¹

¹Астрокосмический центр Физического института им. П.Н. Лебедева РАН, г. Москва, Россия *mihail-andrian@asc.rssi.ru

Поступила в редакцию 19.04.2018 г. После доработки 26.12.2018 г. Принята к публикации 24.01.2019 г.

Рассмотрены алгоритмы обеспечения высокой скорости и достоверности передачи данных в условиях логнормальных амплитудных флуктуаций, определяемых дифракцией Фраунгофера, на линии космический аппарат — наземная станция слежения при когерентном и некогерентном методах приема сигналов. Отмечено преимущество когерентного приема сигналов миллиметрового диапазона со случайным помехоустойчивым кодом.

DOI: 10.1134/S0023420619040010

введение

Как было показано в [1] применение миллиметрового (мм) диапазона, вследствие увеличения полосы частот канала связи, существенно повышает спектральную эффективность и пропускную способность беспроводной передачи данных наземно-космической радио интерферометрии (HKP) на линии космический аппарат — наземная станция слежения (КА — HCC) до скорости соизмеримой со скоростью записи цифровых широкополосных данных в бортовую память КА, обеспечивая тем самым бесперебойную работу наземно-космического интерферометра.

При распространении в турбулентной атмосфере логнормальные флуктуации амплитуды волны A(t) радиосигналов миллиметрового (мм) и субмиллиметрового диапазонов могут быть выражены через нормально распределенный уровень χ [2] с нулевым средним. Уровень χ соответствует логарифму нормированной амплитуды волны $\chi = \ln (A(t)/A_0)$. Экспериментальные данные хорошо подтверждают вывод о нормальном распределении случайной величины χ в тех случаях, когда применимо [2] первое приближение метода плавных возмущений (1)

$$C_{\varepsilon}^2 k^{1/3} z \ll 1, \tag{1}$$

где C_{ε} — структурная постоянная (структурная функция диэлектрической проницаемости); k — волновое число ($2\pi/\lambda$), где λ — длина волны; z —

длина пути электромагнитной волны по каналу с логнормальными флуктуациями (по тропосферному каналу), A(t) и A_0 – соответственно мгновенная амплитуда волны и амплитуда волны в невозмущенной среде. При $C_{\varepsilon} = 0.5 \cdot 10^{-6} \text{ м}^{-2/3}$; $\lambda = 0.004 \text{ м}$; $z < 400 \cdot 10^3 \text{ м}$ указанное неравенство соблюдается. Поскольку логарифм амплитуды, как и уровень χ , распределен по нормальному закону, то сама амплитуда A(t) и нормированная амплитуда $X(t) = A(t)/A_0$ имеют логарифмически нормальное распределение.

Следует иметь ввиду, что плотность вероятности отношения сигнал/шум (ОШС) сигналов мм диапазона для атмосферного канала также описывается логнормальным законом [3, 4], а его дисперсия, наряду с длиной волны, зависит от дальности распространения по тропосфере, которая в свою очередь зависит угла места антенны [1, 2]. Плотность вероятности ОШС [3] представлена выражением (2)

$$p(\gamma) = = \left(\frac{1}{2\gamma\sqrt{2\pi\sigma_{\chi}^{2}}}\right) \exp\left[-\left(\ln\sqrt{\gamma/\gamma_{0}} + \sigma_{\chi}^{2}\right)^{2}/2\sigma_{\chi}^{2}\right], \quad (2)$$

где σ_{χ}^2 – дисперсия логнормального процесса, γ и γ_0 соответственно мгновенное и среднее значение ОСШ на входе приемного устройства.

ДИСПЕРСИЯ ЛОГНОРМАЛЬНЫХ ФЛУКТУАЦИЙ В ЗАВИСИМОСТИ ОТ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ТРОПОСФЕРЫ

Дисперсия в (1) определяется в зависимости от соотношения радиуса (*R*) первой зоны Френеля (3)

$$R = \sqrt{\lambda z_1},\tag{3}$$

с внутренним и внешним масштабами турбулентности [2, 5]. В (3) z_1 общая длина пути распространения электромагнитной волны от передающей антенны. Известно [5], что внутренний масштаб турбулентности (l_0) определяется кинематической вязкостью воздуха (v) по формуле

$$l_0 = \sqrt[4]{\nu^3/\epsilon} \tag{4}$$

и имеет порядок размерности в приземистом слое примерно 1 мм. В (4) є – скорость диссипации энергии турбулентности [5].

Внешний масштаб турбулентности (L_0) определяется турбулентными вихрями, описываемыми законом Колмогорова—Обухова для изотропных сред и обусловлен неравномерностью нагрева воздуха. Порядок величины L_0 соответствует динамическому диапазону (L_0/l_0) турбулентности [5] 10^3-10^4 и составляет примерно 10 м в приземном слое.

Рассмотрим вначале случай, когда радиус первой зоны Френеля значительно меньше внутреннего масштаба турбулентности ($R \ll l_0$). Поскольку логарифм амплитуды, как и уровень χ , распределен по нормальному закону с нулевым средним, то при этом средний квадрат уровня χ равен его дисперсии ($\overline{\chi^2} = \sigma_{\chi}^2$). Из [2] известно, что при выполнении условия ($R \ll l_0$)

$$\left\langle \chi^{2} \right\rangle = \sigma_{\chi}^{2} = z^{3} / 24 \int_{0}^{\infty} \left[\Delta_{\perp}^{2} \psi_{\varepsilon} \left(\rho, \zeta \right) \right]_{\rho=0} d\zeta,$$
 (5)

где $\psi_{\epsilon}(\rho,\zeta)$ – автокорреляционная функция комплексного поля ζ, Δ₁ – оператор поперечного (относительно пути распространения z) дифференцирования-дифференциальный оператор в линейном пространстве гладких функций. В этом случае дисперсия определяется методом геометрической оптики в зависимости от случайных фокусировок-рас-фокусировок (линзирований) объектов размеров порядка l₀. Из (5) следует, что при $R \ll l_0$ [2] дисперсия возрастает кубически в зависимости от расстояния. При длине волны около 4 мм величина радиуса первой зоны Френеля (R) на пути распространения электромагнитной волны существенно превышает внутренний масштаб турбулентности. При этом скорость диссипации энергии турбулентности в тропосфере, при увеличении высоты может возрастать стократно [5], однако в соответствие с (4) это может увеличить l_0 только в 3.16 раза ($\sqrt[4]{100}$).

Рассмотрим теперь ситуацию, когда радиус первой зоны Френеля существенно превосходит внутренний масштаб турбулентности и значительно меньше внешнего масштаба $L_0 \gg R \gg l_0$. В этом случае эффект фокусировки от объектов с размерами порядка l_0 , описываемый методом геометрической оптики, влияет слабо. Для этого случая, при определении дисперсии, характерный вклад дает не режим дифракции Фраунгофера, а френелевская дифракция [2] или даже геометрическая оптика от объектов размерности L_0 . Дисперсия для этой ситуации [2] определяется по формуле (6)

$$\langle \chi^2 \rangle = \sigma_{\chi}^2 = \psi_{\chi}(0, z) = N C_{\varepsilon}^2 k^{7/6} z^{11/6},$$
 (6)

где N — числовая константа, равная [2] $N = \pi^2 A/2 \int_0^\infty (1 - \sin t^2/t^2) t^{-8/3} dt \approx 0.077$, A — постоянный множитель, равный 0.033. Из (6) следует, что при $L_0 \gg R \gg l_0$ средняя квадратичная флуктуация амплитуды (дисперсия) возрастает от расстояния почти квадратично.

Наконец, рассмотрим случай, когда радиус первой зоны Френеля значительно больше внешнего масштаба турбулентности, $R \gg L_0$. При этом дисперсия определяется см. [2] как (7)

$$\langle \chi^2 \rangle = \sigma_{\chi}^2 = \sqrt{2\pi}/8 \sigma_{\varepsilon}^2 k^2 az (1 - \operatorname{arctg} D/D),$$
 (7)

где σ_{ε}^2 – дисперсия флуктуаций диэлектрической проницаемости; *a* – (перечник раскрыва излучения) параметр, характеризующий неоднородность поле внешнего масштаба турбулентности (*L*₀); *D* – волновой параметр, определяемый как

$$D = 2\pi\lambda z_1 / l_0^2 \,. \tag{8}$$

Известно, что при $D \ge 1$, в случае фраунгоферовой дифракции и в пределах первой зоны Френеля с радиусом $\sqrt{\lambda z_1}$ умещается много неоднородностей поля [2], соответствующих радиусу корреляции L_0 флуктуации диэлектрической проницаемости [5] для внешнего масштаба турбулентности ($l_{\rm E}$). Поэтому в силу центральной предельной теории вероятностей закон распределения величин *а* приближается к нормальному. Нормализация этих величин обусловлена "фильтрующим" действием свободного пространства и имеет такую же природу, как и нормализация временных сигналов на выходе узкополосных фильтров [2]. Соответственно, в среде распространения, при услови $R \ge L_0$ корреляци

онная функция флуктуации диэлектрической проницаемости описывается гауссовой кривой

$$\psi_{\varepsilon}(r) = \sigma_{\varepsilon}^{2} \exp\left(-\frac{r^{2}}{2a}\right), \qquad (9)$$

и при этом размер неоднородностей характеризуется единственным масштабом *a*.

Из (8) следует, что волновой параметр пропорционален соотношению квадратов радиуса первой зоны Френеля и внутреннего масштаба турбулентности и возрастает линейно от z_1 . В этом случае, при условии $R \ge L_0$, влияние френелевской дифракции невелико и преобладает режим дифракции Фраунгофера. В моменты, когда радиус первой зоны Френеля соизмерим с внутренним или внешним масштабами турбулентности, существенно влияние геометрической оптики и френелевской дифракции или френелевской дифракции в сочетании с дифракцией Фраунгофера.

Известно, что при достаточно больших z, когда $z \gg L_0$ структурная функция [2] испытывает насыщение и будет равна удвоенной дисперсии диэлектрической проницаемости

$$D_{\varepsilon}(z_1) = D_{\varepsilon}(\infty) = C_{\varepsilon}^2 L_0^{2/3} = 2\sigma_{\varepsilon}^2.$$
(10)

С учетом (10) и при условии, что при $D \ge 1$ в (7) членом arctgD/D можно пренебречь, средний квадрат уровня χ составит (11)

$$\left\langle \chi^2 \right\rangle = \sigma_{\chi}^2 \approx \sqrt{2\pi} / 16 C_{\varepsilon}^2 L_0^{2/3} k^2 az.$$
 (11)

Масштаб неоднородностей *а* пропорционален радиусу корреляции флуктуации диэлектрической проницаемости и всегда меньше вихрей внешнего масштаба турбулентности (L_0). Примем $a = L_0$ для ограничения сверху среднего квадрата уровня χ . С учетом последнего допущения дисперсия логнормального процесса составит (12)

$$\langle \chi^2 \rangle = \sigma_{\chi}^2 \approx \sqrt{2\pi} / 16 C_{\varepsilon}^2 L_0^{5/3} k^2 z..$$
 (12)

Из (12) следует, что при $R \ge 1$ средний квадрат уровня χ зависит от длины пути электромагнитной волны по тропосферному каналу (*z*) линейно. На рис. 1 представлены зависимости указанного среднего квадрата (дисперсии) от длины пути электромагнитной волны по тропосферному каналу (*z*) при $R \ge L_0$ (сплошная прямая) и при $L_0 \ge R \ge l_0$ для $\lambda = 4$ мм.

Как видно из графика и в соответствие с (12) на начальном участке длины пути (*z*) дисперсия уровня χ при $R \gg L_0$ существенно превосходит дисперсию для случая, когда радиус первой зоны Френеля существенно отличается от внешнего и внутреннего масштабов турбулентности ($L_0 \gg R \gg l_0$), поскольку несмотря на линейную зависимость от *z*, коэффициент (волновое число) k^2 для столь малой длины волны велик. Например, при *z* = 40 км дисперсия составит около 0.18.

Рис. 2

При значении z_1 порядка $1.5 \cdot 10^9$ м (т. Лагранжа L2) [1] и длине волны 4 мм, радиус первой зоны Френеля вблизи поверхности Земли составит около 2450 м, что значительно больше внешнего масштаба турбулентности (L_0). Поэтому, в данном случае, режим дифракции Фраунгофера обеспечит быстрый рост дисперсии уровня χ от z.

ВЕРОЯТНОСТИ ОШИБОЧНОГО ПРИЕМА ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ В ТРОПОСФЕРНОМ КАНАЛЕ ПРИ НЕКОГЕРЕНТНОЙ И КОГЕРЕНТНОЙ ДЕМОДУЛЯЦИИ

Выражение (2) описывает плотность вероятности мгновенного значения ОСШ в тропосферном канале. На рис. 2 представлена указанная плотность при среднем значении ОСШ (γ_0) 10 дБ и разных значениях дисперсии. Из анализа кривых следует, что при возрастании дисперсии вероятность мгновенного значения ОСШ смещается в область низких значений.

Усреднением вероятностей ошибок в гауссовом шуме по статистике логнормальных замира-

ний в тропосферном канале определим вероятность ошибок для некогерентного (13) и когерентного (14) приемов соответственно сигналов ОФМ-2 и ФМ-2/ФМ-4 от среднего значения ОСШ (γ_0)

$$P_{nc}(\gamma_0) = \left(\frac{1}{4\sqrt{2\pi\sigma_{\chi}^2}}\right) \times \\ \times \int_0^{\infty} \frac{1}{\gamma} \exp\left[-\left(\ln\sqrt{\gamma/\gamma_0} + \sigma_{\chi}^2\right)^2 / 2\sigma_{\chi}^2\right] \exp\left(-\alpha\gamma\right) d\gamma, \tag{13}$$

$$P_n(\gamma_0) = \left(\frac{1}{4\sqrt{2\pi\sigma_{\chi}^2}}\right) \int_0^{\infty} \frac{1}{\gamma} \sqrt{\gamma_{\chi}} \times \frac{1}{\gamma_{\chi}}$$

$$\times \exp\left[-\left(\ln\sqrt{\gamma/\gamma_0} + \sigma_{\chi}^2\right)^2 / 2\sigma_{\chi}^2\right] \operatorname{erfc}\sqrt{\alpha\gamma}d\gamma,$$
(14)

где α = 1 для фазоманипулированных сигналов. Зависимости вероятности ошибок для некогерентного и когерентного приемов сигналов при разных значениях дисперсии представлены соответственно на рис. 3, 4.

Некогерентный прием сигналов отличается от когерентного приема более простым демодулятором, в котором не происходит выделение несущей частоты сложными схемами с использованием узкополосного полосового фильтра [6, 7]. Определение значения бита/символа происходит сравнением n и n + 1 символов. Кроме того, некогерентный демодулятор менее инерционен, при появлении сигнала достаточно быстро, начиная со второго символа, выполняется его демодуляция [6].

Когерентный прием сигналов обеспечивается выделением несущей когерентной опоры, относительно которой происходит выделение фазы принимаемого сигнала [6, 7]. Этот демодулятор более сложен и инерционен поскольку схема выделения несущей опорной частоты содержит узкополосный полосовой фильтр, обеспечивающий фильтрацию принятого сигнала от шумов, что в свою очередь обеспечивает большую помехоустойчивость (меньшую вероятность ошибки при заданном значении ОСШ). Узкая полоса фильтра определяет точность выделения когерентной опоры, при этом предъявляются дополнительные требования к каналу передачи данных [6].

Интервал корреляции флуктуации амплитуды и фазы сигнала определяется изменением диэлектрической проницаемости, влияющей на вариации показателя преломления [5], и составляет от единиц до десятков секунд. Исходя из этого канал передачи данных является относительно спокойным, отсутствуют значимые быстрые замирания. В этом случае целесообразно применять когерентный демодулятор, который несмотря на относительную сложность более помехоустойчив по сравнению с некогерентным.

Например, для значения ОСШ 9.29 дБ (при скорости передачи данных в симплексе до 16–20 Гбит/с), полученной в [1] для случая размещения передатчика в т. Лагранжа L2 ($1.5 \cdot 10^9$ м), при угле места антенны 17.3°, длине пути по тропо-сферному каналу (*z*) 40 км дисперсия (σ_{χ}^2) составит около 0.2 (рис. 2). При этих условиях вероятность ошибки некогерентного приема составит 0.024, а когерентного 9.66 \cdot 10⁻³. Во втором случае применение случайного помехоустойчивого евклидово-геометрического LDPC кода с линейным расширением и итеративным SPA (Sum-Product Algorithm) декодированием [8] позволит снизить вероятность ошибки до 10⁻⁵.

При перемещении КА из окрестности L2 на геоцентрическую орбиту "Радиоастрона" среднее

значение ОСШ на входе приемника возрастет по крайней мере на 12 дБ. Радиус первой зоны Френеля по-прежнему существенно будет превосходить внешний масштаб турбулентности даже в перигее, обеспечивая выполнение условий дифракции Фраунгофера и линейное возрастание дисперсии логнормальной флуктуации от длины пути по тропосфере. В этом случае при $\sigma_{\chi}^2 = 0.2$ когерентный демодулятор обеспечит вероятность ошибки не хуже $5 \cdot 10^{-6}$, даже без применения помехоустойчивого кода.

Плотность вероятности логнормального процесса для флуктуации амплитуды и мгновенного значения ОСШ получены, когда применимо первое приближение метода плавных возмущений [2], при этом экспериментальные данные хорошо согласуются с теоретическими вплоть до значений дисперсии $\sigma_{\chi}^2 \leq 1$. В представленных примерах (рис. 1) это соблюдается.

В настоящее время наряду с изотропной Колмогоровской турбулентностью, именуемой некогерентной, интенсивно изучается когерентная турбулентность [9]. Спектр когерентной турбулентности более узкий, быстроспадающий относительно спектра некогерентной структуры. Благодаря этому когерентная турбулентность представляет собой трехмерный топологический солитон, начиная от единичной упорядоченной ячейки Бенара, до систем периодически распределенных в пространстве гидродинамических возмущений, как, например, систем разнообразных валов. Причем наиболее крупными системами, с радиусом до 5000 км, являются ячейки Ферреля и Гадлея (Ferrell, Hadley) [9]. Их можно рассматривать как разновидность ячеек Бенара в тонком сферическом слое (в масштабах Земли). В этом типе когерентной турбулентности условие нормальности распределенного уровня χ уже не будет выполняться и параметры случайного сигнала в данном типе турбулентности необходимо определять экспериментально, статистическим методом, по выборке случайных величин [10].

ЗАКЛЮЧЕНИЕ

Применение мм диапазона в НКР в условиях отсутствия тропосферных гидрометеоров существенно увеличивает скорость передачи данных на линии КА-НСС вследствие увеличения полосы частот канала. Однако флуктуации амплитуды сигнала, возникающие вследствие турбулентности тропосферы снижают помехоустойчивость и скорость передачи данных. Указанные факторы определяют следующие особенности использования радиоволн мм диапазона при организации каналов связи: угол места антенны должен быть >17°, поскольку в противном случае существенно возрастает путь радиосигнала в тропосфере, что с одной стороны повышает дисперсию логнормальных флуктуаций амплитуды, а с другой увеличивает затухание сигнала; формируемая схема передачи данных представляется гибкой; например, возможно снижение скорости передачи с 16-20 до 8-10 Гбит/с, что еще является достаточно высокой скоростью, но при этом ОСШ на входе приемника увеличивается на 3 дБ. Возможно, не снижая общей скорости передачи, уменьшить информационную скорость, применив тем самым современный помехоустойчивый код, изменяемый в зависимости от внешних условий при длительном процессе работы НКР; при возникновении на пути распространения радиосигнала структур когерентной турбулентности солитонного типа, уровень χ в которых не распределен по нормальному закону, статистические параметры сигнала необходимо определять экспериментально.

СПИСОК ЛИТЕРАТУРЫ

- 1. Андрианов М.Н., Костенко В.И., Лихачев С.Ф. О повышении спектральной эффективности и пропускной способности в канале передачи данных на линии космический аппарат — наземная станция слежения // Космич. исслед. 2018. Т. 56. № 1. С. 85–92. (Cosmic Research. P.)
- Рытов С.М., Кравцов Ю.А., Татарский В.И. Введение в статистическую радиофизику. Часть II. Случайные поля. М.: Наука, 1978. С. 25; 82–83; 281–282; 321–325; 332; 335.
- Андрианов М.Н. Разработка субоптимальных алгоритмов повышения эффективности систем подвижной радиосвязи // Диссертация на соискание уч. ст. к.т.н. М.: ИРЭ РАН, 2009. С. 69–75; 114–117.
- Andrianov M., Kiselev I. Application of the Mode Intermittent Radiation in Fading Channels // Digital Communication. Publishing house InTech. P. 139–160. March 2012.
- Татарский В.И. Распространение волн в турбулентной атмосфере. М.: Наука, 1967. С. 76; 118– 119; 132–135; 187–189; 426–434.
- Окунев Ю.Б. Цифровая передача информации фазоманипулированными сигналами. М.: Радио и связь, 1991. С. 90–112; 149–173; 228–235; 237–239.
- 7. Скляр Б. Цифровая связь. М.: Вильямс, 2003. С. 135–138; 236–239; 250–251; 577–580.
- Yu Kou, Shu Lin, Marc P.C. Fossorier. Low-Density Parity-Check Codes Based on Finite Geometries: A Rediscovery and New Results // IEEE Trans. On Inform. Theory. 2001. V. 47. № 7. P. 2711–2736.
- 9. Носов В.В., Григорьев В.М., Ковадло П.Г. и др. Когерентные структуры в турбулентной атмосфере. Эксперимент и теория // Солнечно-земная физика. 2009. Вып. 14. С. 97–113.
- Купер Дж., Макгиллем К. Вероятностные методы анализа сигналов и систем. М.: Мир, 1989. С. 135– 154.